Cognitive Science

Cognitive Science

Thinking can best be understood in terms of representational structures in the mind and computational procedures that operate on those structures

How Brain Scientists Forgot That Brains Have Owners

https://www.theatlantic.com/science/archive/2017/02/how-brain-scientists-forgot-that-brains-have-owners/517599/

These people don't seem to like the theories that are building around the neural correlates of consciousness... 

A landmark study, published last year, beautifully illustrated his point using, of all things, retro video games. Eric Jonas and Konrad Kording examined the MOS 6502 microchip, which ran classics like Donkey Kong and Space Invaders, in the style of neuroscientists. Using the approaches that are common to brain science, they wondered if they could rediscover what they already knew about the chip—how its transistors and logic gates process information, and how they run simple games. And they utterly failed.

“What we extracted was so incredibly superficial,” Jonas told me last year. And “in the real world, this would be a millions-of-dollars data set.” If the kind of neuroscience that has come to dominate the field couldn’t explain the workings of a simple, dated microchip, how could it hope to explain the brain—reputedly the most complex object in the universe?

 

This criticism misses the mark, says Rafael Yuste from Columbia University, who works on developing new tools for studying the brain. We still don’t understand how the brain works, he says, “because we’re still ignorant about the middle ground between single neurons and behavior, which is the function of groups of neurons—of neural circuits.” And that’s because of “the methodological shackles that have prevented investigators from examining the activity of entire nervous system. This is probably futile, like watching TV by examining a single pixel at a time.” By developing better tools that can watch entire neural circuits in action, programs like the BRAIN Initiative are working against reductionism and will take us closer to capturing the emergent properties of the brain.

But Krakauer says that this viewpoint just swaps “neuron” for “neural circuit” and then makes the same conceptual mistake. “It’ll be interesting to see emergent properties at the level of the circuit, but it’s a fallacy to think that you get closer to the whole organism and understanding will automatically ensue,” he says.